

Elektromagnetische Strahlung

Elektromagnetisches Spektrum

Hooksches Gesetz

Harmonischer Oszillator

Schwingungsmoden von Methan

Schematischer Aufbau eines Scanning IR-Spektrometers

Schematischer Aufbau eines FT-IR Spektrometers

nach: M. Hesse, H. Meier, B. Zeeh *Spektroskopische Methoden in der Organischen Chemie*, 6. Auflage, Thieme Verlag, Stuttgart, 2002.

IR Spektrum von 4-Methylbenzoesäureethylester

Bereiche im IR Spektrum

substituierten Aromaten

$1/\lambda$ -Bereich / cm ⁻¹	Absorptionen	
3700 - 2500	O-H, N-H, C-H Einfachbindungen	
2500 - 1900	Dreifachbindungen und kumulierte Doppelbindungen	
1900 - 1500	C=O, C=C, C=N, N=O Doppelbindungen	
unterhalb 1500	fingerprint Bereich (Deformationsschwingungen, Valenzschwingungen von Gruppen mit schweren Atomen, Gerüstschwingungen)	

Quelle: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

Quelle: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://www.aist.go.jp/RIODB/SDBS/)

Diethylether

Quelle: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://www.aist.go.jp/RIODB/SDBS/)

Cyclohexylamin

Quelle: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://www.aist.go.jp/RIODB/SDBS/)

Absorptionsfrequenzen der C=O Valenzschwingung verschiedener Substanzklassen

R-	4
	X
	~~~

Ist R = Aryl, verringert sich die Wellenzahl im Vergleich zu R = Alkyl um ca. 25 cm⁻¹

Х	Substanzklasse	Wellenzahlbereich in cm ⁻¹
CI	Carbonsäurechlorid	1815 - 1790
OC(O)R	Carbonsäureanhydrid	1850 - 1800
OR	Carbonsäureester	1750 - 1735
Н	Aldehyd	1740 - 1720
R	Keton	1725 - 1705
ОН	Carbonsäure	1725 - 1700
NR ₂	Carbonsäureamid	1670 - 1630
CO0-	Carboxylat	1610 - 1550

#### Abhängigkeit der Absorptionsfrequenz der C=O Valenzschwingung cyclischer Ketone, Ester (Lactone) und Amide (Lactame) von der Ringgröße

	Wellenzahl der C=O Valenzschwingung in cm ⁻¹ für n =			
	1	2	3	4
°↓ ↓ ↓ ↓ n	1775	1751	1718	1706
$\langle \circ \rangle$	1840	1775	1750	1730
	1750	1717	1670	1669

*nach*: M. Hesse, H. Meier, B. Zeeh *Spektroskopische Methoden in der Organischen Chemie*, 6. Auflage, Thieme Verlag, Stuttgart, 2002.

	Wellenzahl der C=O Valenzschwingung in cm ⁻¹ (Messung im Film)		
	R = H	1686	
K R °	R = OH	1643	
	R = H	1673	
	R = OH	1659	

#### Einfluss von intramolekularen Wasserstoffbrücken auf die Absorptionsfrequenz der C=O Valenzschwingung

#### Einfluss von Kernsubstituenten auf die Absorptionsfrequenz der C=O Valenzschwingung von Acetophenonen



R	Wellenzahl der C=O Valenzschwingung in cm ⁻¹
	(Messung in CCl ₄ )
OCH ₃	1682
CH₃	1687
Н	1691
Cl	1693
NO ₂	1701

	Wellenzahl der C-H Deformationsschwingung in cm ⁻¹	
	770 - 735 (s) 710 - 685 (s)	gewöhnlich zwei Banden
X X H H	760 - 740 (s)	
X H H H H	800 - 770 (s)	
	840 - 800 (s)	
	900 - 800 (w)	Bande des isolierten H gewöhnlich sehr schwach

# Absorptionsfrequenzen der C-H Deformationsschwingungen (*out of plane*) von Aromaten in Abhängigkeit des Substitutionsmusters

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)





*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)



1,4-Dimethylbenzol (p-Xylol)

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

# Absorptionsfrequenzen von Dreifachbindungen

	Wellenzahl in cm ⁻¹	
	3300 (s)	C–H Valenzschwingung
-C=C-H	2140 - 2100 (s)	C–C Valenzschwingung
—C≡C—	2260 - 2150 (s)	C–C Valenzschwingung
—C≡N	2260 - 2200 (v)	C–N Valenzschwingung

#### Absorptionsfrequenzen von kumulierten Doppelbindungen

	Wellenzahl in cm ⁻¹	
O=C=O	2349 (s)	
—N=N=N ⊖	2160 - 2120 (s)	
—N=C=O	2275 - 2250 (s)	sehr hohe Intensität
-N=C=N-	2155 - 2130 (s)	sehr hohe Intensität
C=C=C	~ 1950 (s)	
)c=c=o	~ 2150 (s)	



Benzonitril

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

2262

2000

HAVENUMBER !----

1500

1000

500

3000



Nitromethan





*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

		Wellenzahlbereich der
		C–O Valenzschwingung in cm ⁻¹
Alkohol	—С-о-н Т	1250 - 1000 (s)
Ether		1150 - 1070 (s)
	)c-o-c—	1275 - 1200 (s) 1075 - 1020 (s)
Ester	)c-o-c—	1330 - 1050 (s) (zwei Banden)

#### Absorptionsfrequenzen von C–O Valenzschwingungen

## Absorptionsfrequenzen von C-Hal Valenzschwingungen

	Wellenzahlbereich der	Wellenzahlbereich der
	Alkyl–Hal Valenzschwingung in cm ⁻¹	Aryl–Hal Valenzschwingung in cm ⁻¹
C–F	1365 - 1120 (s)	1270 - 1100
C–CI	830 - 560 (s)	1100 - 1030
C–Br	680 - 515 (s)	1075 - 1030
C–I	~ 500 (s)	~ 1060

2-Chlorpropan



*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

Isotop	I	γ · 10 ⁻⁷ T ⁻¹ s ⁻¹	Häufigkeit %	Resonanzfrequenz MHz*
¹ H	1/2	26,752	99,985	100,0
² H	1	4,107	0,015	15,351
¹³ C	1/2	6,728	1,10	25,144
¹⁴ N	1	1,934	99,634	7,224
¹⁷ O	5/2	-3,628	0,038	13,557
¹⁹ F	1/2	25,181	100,0	94,077
³¹ P	1/2	10,841	100,0	40,481
³³ S	3/2	2,053	0,76	7,670

#### NMR-aktive Kerne

* Bei einem magnetischen Feld der Feldstärke 2,3488 T

# Schematischer Aufbau eines CW-NMR Spektrometers





Hz	ppm	Int.	Zuordn.	δ	J
714,38	7,977	243	٨	7.02	31-0211-
706,13	7,885	321	A	7,93	-J = 8,3 HZ
650,15	7,260	267	D	7.04	31-0011-
641,94	7,168	206	В	7,21	-J = 8,2 ⊓Z
400,56	4,473	127			
393,44	4,394	468	C	4.05	31-711-
386,31	4,314	494	C	4,35	$J = 7, I \square Z$
379,19	4,234	148			
214,00	2,390	848	D	2,39	
130,25	1,455	485			
123,25	1,377	1000	E	1,38	³ J = 7,1 Hz
116.06	1 296	427			

ĊH₃ (E)

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

# ¹H-NMR Spektrum von 4-Methylbenzoesäureethylester

## ¹H-NMR Spektrum von Benzol

(300 MHz, CDCl₃)



# Ringstrommodell



*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

# 1,1-Dichlorethen



Chloracetylen



# Pentachlorbenzol



# (1,1,1-Trichlorethan $\delta$ = 2,80)

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://www.aist.go.jp/RIODB/SDBS/)

Inkremente zur Abschätzung der Resonanz von Methylenprotonen
(Regel von Shoolery)

X-CH ₂ -Y		$\delta(CH_2) = 0,23 + S_x + S_y$		
Substituent	S	Substituent	S	
CH₃	0,47	NR'R"	1,57	
CF₃	1,14	SR	1,64	
CR=CR'R"	1,32	Ι	1,82	
CECH	1,44	Br	2,33	
COOR	1,55	OR	2,36	
CONH ₂	1,59	Cl	2,53	
COR	1,70	ОН	2,56	
CN	1,70	OCOR	3,13	
$C_6H_5$	1,83	OC ₆ H₅	3,23	

# Inkremente zur Abschätzung der Resonanz von olefinischen Protonen

(Regel von Pascual, Meier und Simon)

S _{gem} S _{trans}	0(11) =	0,20 · Ogem	
Substituent	Sgem	Scis	Strans
Н	0,00	0,00	0,00
CH₃	0,44	-0,26	-0,29
Cl	1,00	0,19	0,03
NR ₂ (aliph.)	0,69	-1,19	-1,31
OAlkyl	1,18	-1,06	-1,28
OCOCH ₃	2,09	-0,40	-0,67
$C_6H_5$	1,35	0,37	-0,10
CH=CH ₂ (konj.)	1,26	0,08	-0,01
COOH (konj.)	0,69	0,97	0,39
NO ₂	1,84	1,29	0,59

H _	S _{cis}
Saam	Strang

 $\delta(H) = 5.28 + S_{11} + S_{12} + S_{13}$ 

# Inkremente zur Abschätzung der Resonanz von aromatischen Protonen



$$\delta(\mathsf{H}) = 7,27 + \Sigma(\mathsf{S}_{\mathsf{o}},\mathsf{S}_{\mathsf{m}},\mathsf{S}_{\mathsf{p}})$$

Substituent	So	Sm	Sp
CH₃	-0,17	-0,09	-0,18
CI	0,02	-0,06	-0,04
OH	-0,50	-0,14	-0,40
OCH ₃	-0,43	-0,09	-0,37
OCOCH ₃	-0,21	-0,02	0,00
NH ₂	-0,75	-0,24	-0,63
$C_6H_5$	0,18	0,00	0,08
СНО	0,58	0,21	0,27
COCH ₃	0,64	0,09	0,30
COOCH ₃	0,74	0,07	0,20
NO ₂	0,95	0,17	0,33

# **Karplus Kurve**





*nach*: M. Hesse, H. Meier, B. Zeeh *Spektroskopische Methoden in der Organischen Chemie*, 6. Auflage, Thieme Verlag, Stuttgart, 2002.



#### Spektrum von 4-Methylbenzoesäureethylester

Anwendung des Inkrement-Systems zur Zuordnung der aromatischen C-Atome:

C(B):	$128,5 + S_1(CH_3) + S_p(COOEt)$	= 128,5 + 9,2 + 4,3	= 142,0
C(C):	$128,5 + S_{o}(COOEt) + S_{m}(CH_{3})$	= 128,5 + 1,2 - 0,1	= 129,6
C(D):	$128,5 + S_m(COOEt) + S_o(CH_3)$	= 128,5 - 0,1 + 0,7	= 129,1
C(E):	$128,5 + S_1(COOEt) + S_p(CH_3)$	= 128,5 + 2,0 - 3,1	= 127,4

*Quelle*: SDBS (Integrated Spectral Data Base System for Organic Compounds), National Institute of Advanced Industrial Science and Technology Japan (http://riodb01.ibase.aist.go.jp/sdbs/)

# Inkremente zur Abschätzung der Resonanz von aromatischen ¹³C-Kernen



$$\delta(^{13}\text{C}) = 128,5 + \Sigma(S_1, S_0, S_m, S_p)$$

Substituent	S ₁	So	Sm	Sp
CH₃	9,2	0,7	-0,1	-3,1
F	34,8	-13,0	1,6	-4,4
CI	6,3	0,4	1,4	-1,9
Br	5,8	3,2	1,6	-1,6
I	-34,1	8,9	1,6	-1,1
ОН	26,9	-12,8	1,4	-7,4
OCH₃	31,4	-14,4	1,0	-7,7
OCOCH ₃	22,4	-7,1	0,4	-3,2
NH ₂	18,2	-13,4	0,8	-10,0
$C_6H_5$	13,1	-1,1	0,4	-1,1
СНО	8,4	1,2	0,5	5,7
<b>COCH</b> ₃	8,9	0,1	-0,1	4,4
COOCH ₃	2,0	1,2	-0,1	4,3
NO ₂	19,9	-4,9	0,9	6,1

# Zweidimensionale NMR Spektroskopie

