Symmetrie im Alltag

Chiralität im Alltag

Reaktionen prochiraler Verbindungen

Symmetrieelemente

nach: S. Hauptmann, G. Mann Stereochemie, Spektrum Akademischer Verlag, Heidelberg, 1996.

Symbol	Symmetrieelemente	Chiralität	Beispiele	
C ₁	keine	V	COOH HO ↓''H CH ₃	
Cn	C _n (n>1)	~		C ₂
Dn	C_n und n C_2	V		D ₂
Cs	σ			
Ci	i		F CI H	
Sn	S _n (n>2 und geradzahlig)			\mathbf{S}_4
C _{nv}	$C_{ m n}$ und n $\sigma_{ m v}$			C _{3v}
C _{nh}	$C_{ m n}$ und $\sigma_{ m h}$		/	\mathbf{C}_{2h}
D _{nd}	$C_{ m n}$ und n $C_{ m 2}$ und n $\sigma_{ m v}$			\mathbf{D}_{2d}
D _{nh}	$C_{ m n}$ und n $C_{ m 2}$ und n $\sigma_{ m v}$ und $\sigma_{ m h}$		\bigcirc	D _{6h}
C∞v	C_{∞} und $\infty \sigma_{v}$		H−C≡N	
D∞h	C_{∞} und $\infty \sigma_{ m v}$ und $\sigma_{ m h}$		Н−С≡С−Н	
T _d	4 C_3 und 3 C_2 und 6 σ			
O _h	3 C_4 und 4 C_3 und 6 C_2 und 9 σ		F, F F, S F F F	
K _h	alle			

Punktgruppen

nach: S. Hauptmann, G. Mann Stereochemie, Spektrum Akademischer Verlag, Heidelberg, 1996.

Symmetrie von Molekülen mit tetraedrischem Zentralatom

	Punktgruppe	Symmetrieelemente	Chiralität
ZABCD	C ₁	keine	~
ZA ₂ BC	Cs	σ	
ZA ₂ B ₂	C _{2v}	C_2 und 2 σ_v	
ZA ₃ B	C _{3v}	C_3 und 3 $\sigma_{ m v}$	
ZA4	T _d	4 C_3 und 3 C_2 und 6 σ	

Stereogene 2	Zentren
--------------	---------

Struktur		Inversionsbarriere / kJ mol ⁻¹
	gesättigte organische Verbindungen	> 200
 Si,	Silizium Verbindungen	> 200
⊕ ∕ N…,	Ammonium Verbindungen	> 200
⊕ ∕ ₽``''	Phosphonium Verbindungen (Phosphate, Phosphonate)	> 200
⊖,	Carbanionen	10 - 90
N	Amine	20 - 40
€ € • •	Oxonium Verbindungen	5 - 20
	Phosphane	120 - 160
⊕ ,	Sulfonium Verbindungen	120 - 160
0 ⁻⁵ ,	Sulfoxide	120 - 160

Algorithmus zur Zuordnung des Isomerieverhältnisses zweier Moleküle

Prioritäten von funktionellen Gruppen

_ I	>	–Br	>	–CI	>	–SPh	>
$-SCH_3$	>	–F	>	–OPh	>	$-OCH_3$	>
–OH	>	$-N_3$	>	-N(CH ₃) ₂	>	–NHPh	>
$-NH_2$	>	$-COOCH_3$	>	–COOH	>	$-CONH_2$	>
$-COCH_3$	>	–CHO	>	$-CH_2OH$	>	–CN	>
–Ph	>	$-CH=CH_2$	>	$-CH(CH_3)_2$	>	$-CH_2CH=CH_2$	>
$-CH_2CH_2CH_3$	>	$-CH_2CH_3$	>	$-CD_3$	>	$-CH_2D$	>
$-CH_3$	>	–D	>	_H	>	nicht-bindendes Elektronenpaar	

Schematischer Aufbau eines Polarimeters

Elektromagnetische Strahlung

Linear polarisiertes Licht

links circular polarisierter Lichstrahl

Oktandenregel

- 1. Atome, die von den Ebenen durchschnitten werden liefern keinen Beitrag.
- 2. Atome in den hinteren Oktanden rechts unten und links oben liefern einen positiven Beitrag.
- 3. Atome in den vorderen Oktanden rechts oben und links unten liefern ebenfalls einen positiven Beitrag.
- 4. Atome in den vier übrigen Oktanden leisten einen negativen Beitrag.
- 5. Das Vorzeichen des Cotton-Effekts hängt davon ab, in welchem der Oktanden sich der überwiegende Teil des Moleküls befindet.

Phasendiagramme

Kinetische Racematspaltung

Abhängigkeit des Enantiomerenüberschuss *ee* des **verbleibenden Substrats** von der Enantioselektivität *es* und vom Umsatz C

		Ausbeute		Ausbeute		Ausbeute
es	C / %	(90% ee)	C / %	(95% ee)	C / %	(99% ee)
		/%		/%		/%
5	74,7	25,3	79,4	20,6	86,6	13,4
10	62,0	38,0	65,8	34,2	72,0	28,0
20	54,9	45,1	57,7	42,3	61,9	38,1
30	52,4	47,6	54,8	45,2	58,1	41,9
40	51,1	48,9	53,3	46,7	56,1	43,9
50	50,4	49,6	52,4	47,6	54,8	45,2
60	49,9	50,1	51,8	48,2	54,0	46,0

Abhängigkeit des Enantiomerenüberschuss ee' des entstehenden Produkts von der Enantioselektivität es und vom Umsatz C

Algorithmus zur Zuordnung der Topizität von Liganden

Algorithmus zur Zuordnung der Topizität von Seiten

nach: G. Quinkert, E. Egert, C. Griesinger, *Aspekte der Organischen Chemie - Struktur*, Verlag Helvetica Chimica Acta, Basel und VCH, Weinheim, 1995.

Potentialkurve von Ethan

Deskriptoren für Konformationen

Torsionswinkel Θ	Benennung	Abkürzung
0° ± 30°	±synperiplanar	±sp
$+60^{\circ} \pm 30^{\circ}$	+synclinal	+sc
+120° ± 30°	+anticlinal	+ac
180° ± 30°	±antiperiplanar	±ap
-120° ± 30°	-anticlinal	-ac
$-60^{\circ} \pm 30^{\circ}$	-synclinal	-SC

Potentialkurve von Butan

syn-Pentan-Wechselwirkung

Gestaffelte Konformere von Pentan

Potentialkurve von Cyclohexan

Energiebetrag, um den ein Sessel mit axialem Substituenten X einem Sessel mit äquatorialem Substituenten benachteiligt ist:

Х	ΔG / kJ mol ⁻¹	Х	ΔG / kJ mol ⁻¹
F	0,6	NO ₂	4,6
Br	1,6	NH_2	5,0
CI	1,8	COOH	5,6
I	1,8	CH_3	7,1
ОН	2,2	CH ₂ Ph	8,0
OCH ₃	2,5	CH(CH ₃) ₃	9,0
CHO	4,0	$C(CH_3)_3$	20,0

Argumentation über stereoelektronischen Effekt:

Argumentation über Dipolmoment:

günstiger in unpolaren Lösungmitteln

ungünstiger in unpolaren Lösungmitteln

Dynamische NMR-Spektroskopie

N,N-Dimethylformamid

Man erkennt das Einfrieren der Methylrotation. Bei -72° C ist aus dem A₃-Spinsystem ein A₂X-Spinsystem mit einem Triplett (1 Proton) und einem Dublett (2 Protonen) geworden. Die Austauschgeschwindigkeit bei T_c (etwa -40° C) beträgt 156 s⁻¹. Bei -72° C ist sie aber immer noch 2.5 s⁻¹.

Abhängigkeit von kc von der NMR Messfrequenz

Durch Erhöhung der Messfrequenz erhöht sich auch T_c.

Der Spektrenvergleich zeigt, dass sich die **Verringerung der Messfrequenz** wie eine **Temperaturerhöhung** auswirkt. Bei 60 MHz ist das Gleichgewicht der Umwandlung schon bei 70 °C schnell auf der NMR Zeitskala während bei 600 MHz bei dieser Temperatur noch breite Signale beobachtet werden.

Stereochemische Aspekte bei Calix[4]arenen

Topologische Aspekte bei Alltagsobjekten und Molekülen

Unter der Annahme, dass folgende schematisch dargestellten Strukturen aus derselben Anzahl Methyleneinheiten aufgebaut sind, stehen sie in den folgenden Isomeriebeziehungen.

Elektronenmikroskopische Aufnahmen von verknoteten DNA Strukturen

Quelle: R. S. Forgan; J.-P. Sauvage; J. F. Stoddart *Chem. Rev.* **2011**, *111*, 5434-5464 (DOI: 10.1021/cr200034u) Copyright © 2011 American Chemical Society

Übersicht über die Topologie ausgewählter Knoten

Quelle: R. S. Forgan; J.-P. Sauvage; J. F. Stoddart *Chem. Rev.* **2011**, *111*, 5434-5464 (DOI: 10.1021/cr200034u) Copyright © 2011 American Chemical Society

Ν 2 Cu+ 2 + X = -ĊН ÒН HQ ЮН ١ **5** Ö Cs₂CO₃ Ô Ο KCN \cap 0 റ

Knotensynthese mithilfe von Metallhelikaten

Stereochemische Aspekte bei Catenanen

Verwendet man bei der Synthese des Catenans ein substituiertes Isophthaloyldichlorid sind drei isomere Produkte denkbar.

Da durch die sperrigen Cyclohexylsubstituenten eine Rotation der Ringe verhindert wird, sind diese Isomere stabil und isolierbar. Sie verhalten sich stereochemisch wie Diastereomere (bei der Synthese werden immer nur zwei der drei möglichen Isomere gebildet, was durch den Mechanismus der Catenanbildung erklärbar ist.

Führt man Sulfonamidgruppen in die Ringe ein, verringert sich die Symmetrie. In diesem Fall sind spiegelbildliche Isomere dieser Catenane denkbar.

(Von den beiden möglichen Produkten (*in/out* und *in/in*) bildet sich nur das *in/out* Isomer, da Sulfonamide stabilere Wasserstoffbrücken zu C=O Gruppen ausbilden als Amide.)

Synthese Borromäischer Ringe

Quelle: K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart Science **2004**, *304*, 1308-1312.

Beispiele für Retrosynthesen

Ein Eudesman Sesquiterpen

(E. J. Corey, R. L. Carney "New Methods for Carbocyclic Synthesis Applicable to the Gibberellic Acids. Stereoselective Introduction of the Angular Vinyl Grouping and Pinacolic Cyclization of Keto Aldehydes " *J. Am. Chem. Soc.* **1971**, 93, 7318-7319)

Eine Zwischenstufe einer Atisin Synthese

(M. Ihara, M. Suzuki, K. Fukumoto, T. Kametani, C. Kabuto "Stereoselective Total Synthesis of (±)-Atisine via Intramolecular Double Michael Reaction" *J. Am. Chem. Soc.* **1988**, *110*, 1963-1964)

Eine Teilstruktur der Gibberellinsäure

(E. J. Corey, R. L. Carney "New Methods for Carbocyclic Synthesis Applicable to the Gibberellic Acids. Stereoselective Introduction of the Angular Vinyl Grouping and Pinacolic Cyclization of Keto Aldehydes " *J. Am. Chem. Soc.* **1971**, 93, 7318-7319)

Selektivität organischer Reaktionen

Selektivität organischer Reaktionen

Temperaturabhängigkeit

$\Delta\Delta G^{\ddagger}$ bzw. $\Delta\Delta G^{0}$	Temperatur / °C	Selektivität
5,7	25	10:1
5,7	-25	16:1
5,7	-78	34:1
5,7	25	10:1
4,7	-25	10:1
3,7	-78	10:1

Aldolreaktion

Zimmermann-Traxler-Modell

Übergangszustände bei Reaktion des (*E*)-Enolat

Übergangszustände bei Reaktion des (*Z*)-Enolat

stabiler führen zum Racemat des *anti*-Produkts

instabiler

instabiler führen zum Racemat des *syn*-Produkts

stabiler führen zum Racemat des *syn*-Produkts

instabiler führen zum Racemat des *anti*-Produkts

Stereoselektivität der Enolatbildung

Base	Additiv	R	E : Z
LiN(<i>i</i> Pr) ₂ (LDA)	-	–OMe	95 : 5
LiN(<i>i</i> Pr) ₂ (LDA)	HMPA	–OMe	16 : 84
LiN(<i>i</i> Pr) ₂ (LDA)	-	–OtBu	95 : 5
LiN(<i>i</i> Pr) ₂ (LDA)	-	–Et	70 : 30
LiN(SiMe ₃) ₂ (LHMDS)	-	–Et	30 : 70
LiN(SiEt ₃) ₂	-	–Et	1:99
LiN(SiMe ₂ Ph) ₂	-	–Et	0 : 100
LiN(<i>i</i> Pr) ₂ (LDA)	-	<i>−i</i> Pr	40 : 60
LiN(<i>i</i> Pr) ₂ (LDA)	-	$-C_{6}H_{11}$	39 : 61
LiN(SiMe ₃) ₂ (LHMDS)	-	$-C_{6}H_{11}$	15 : 85
LiN(SiEt ₃) ₂	-	$-C_{6}H_{11}$	4:96
LiN(SiMe ₂ Ph) ₂	-	$-C_{6}H_{11}$	0 : 100
LiN(<i>i</i> Pr) ₂ (LDA)	-	<i>–t</i> Bu	0 : 100
LiN(<i>i</i> Pr) ₂ (LDA)	_	–Ph	0 : 100
LiN(<i>i</i> Pr) ₂ (LDA)	-	-NMe ₂	0 : 100

(N.B.: Wenn R = OR' kehren sich bei den obigen Strukturen die Deskriptoren formal um. Zur besseren Vergleichbarkeit beziehen sich die verwendeten Deskriptoren auf die jeweilig blau hervor gehobene Anordnung der Gruppen an der Doppelbindung ohne Berücksichtigung der Priorität von R in Bezug auf die anderen Substituenten.)

Einfluss von Titantetrachlorid

1 equiv TiCl₄

2 equiv TiCl₄

Enantioselektive Aldolreaktion nach Oppolzer

Reduktion von prochiralen Carbonylverbindungen

Noyori-Reduktion

Reduktion mit chiralen Boranen

Alpine-Boran[®]

Diisopinochampheylchlorboran (IPC)₂BCl

Corey-Itsuno-Reaktion

Katalysecyclus der Prolin-vermittelten Aldolreaktion

Vergleich der Übergangszustände der Prolin-vermittelten Aldol- und Mannich-Reaktion

Mannich Reaktion

Aldol Reaktion

Der Angriff erfolgt auf der Si Seite des Imins

syn

 R^2

(dabei liegt bevorzugt das E Imin vor)

Übergangszustand der Sharpless Epoxidierung

Übergangszustand der Jacobsen-Katsuki Epoxidierung

Asymmetrische Dihydroxylierung nach Sharpless

AD-Mix α : 0.2 mol% K₂OsO₂(OH)₄, 1 mol% (DHQ)₂-PHAL, 3-fache Molmenge K₃Fe(CN)₆, 3-fache Molmenge K₂CO₃) AD-Mix β : 0.2 mol% K₂OsO₂(OH)₄, 1 mol% (DHQD)₂-PHAL, 3-fache Molmenge K₃Fe(CN)₆, 3-fache Molmenge K₂CO₃)

Asymmetrische Diels-Alder Reaktionen

Diazaaluminolidine

Bis(oxazolin)-Kupfer(II)-Komplexe

Enantioselektive Deprotonierungen

Die Stereoselektivität der Deprotonierung ist kinetisch kontrolliert.

Reaktionspfade ohne chirale Induktion

Chirale Verstärkung

Doppelte Stereodifferenzierung

